Dipl.-Ing. Dr.techn. Lukas Exl, Privatdoz.
Sprechstunde: nach Vereinbarung, OMP1 office 08.127
Wintersemester 2025
250039 VO Angewandtes maschinelles Lernen
250044 PS Angewandtes maschinelles Lernen
250093 SE Applied Machine Learning
262001 VO Numerical Mathematics 1
262002 UE Numerical Mathematics 1 - Exercises
Sommersemester 2025
250090 SE Applied Machine Learning
262007 VO Numerical Mathematics 2
262008 UE Numerical Mathematics 2 - Exercises
Wintersemester 2024
250039 VO Angewandtes Maschinelles Lernen
250041 SE Seminar Applied Mathematics
250044 PS Angewandtes Maschinelles Lernen
262001 VO Numerical Mathematics 1
262002 UE Numerical Mathematics 1 - Exercises
Schaffer, S., Schrefl, T., Oezelt, H., Mauser, N. J., & Exl, L. (2025). Physics aware machine learning for micromagnetic energy minimization: Recent algorithmic developments. Computer Physics Communications, 315, Artikel 109719. https://doi.org/10.1016/j.cpc.2025.109719
Schaffer, S., & Exl, L. (2025). Physics-informed low-rank neural operators with application to parametric elliptic PDEs. https://arxiv.org/pdf/2509.07687
Exl, L., & Schaffer, S. (2025). Near-field-free super-potential FFT method for the three-dimensional free-space Poisson equation. https://arxiv.org/pdf/2506.04489
Exl, L., & Schaffer, S. (2025). Higher order stray field computation on tensor product domains. https://arxiv.org/pdf/2505.19180
Trost, C. O. W., Žák, S., Schaffer, S., Walch, L., Zitz, J., Klünsner, T., Leitner, H., Exl, L., & Cordill, M. J. (2025). Explainable machine learning and feature engineering applied to nanoindentation data. Materials & Design, 253, Artikel 113897. https://doi.org/10.1016/j.matdes.2025.113897, https://doi.org/10.1016/j.matdes.2025.113897
Schaffer, S., & Exl, L. (2024). Constraint free physics-informed machine learning for micromagnetic energy minimization. Computer Physics Communications, 300, Artikel 109202. https://doi.org/10.1016/j.cpc.2024.109202
Kovacs, A., Exl, L., Kornell, A., Fischbacher, J., Hovorka, M., Gusenbauer, M., Breth, L., Oezelt, H., Yano, M., Sakuma, N., Kinoshita, A., Shoji, T., Kato, A., & Schrefl, T. (2024). Image-based prediction and optimization of hysteresis properties of nanocrystalline permanent magnets using deep learning. Journal of Magnetism and Magnetic Materials, 596, Artikel 171937. https://doi.org/10.1016/j.jmmm.2024.171937
Schaffer, S., Schrefl, T., Oezelt, H., Kovacs, A., Breth, L., Mauser, N. J., Suess, D., & Exl, L. (2023). Physics-informed machine learning and stray field computation with application to micromagnetic energy minimization. Journal of Magnetism and Magnetic Materials, 576, Artikel 170761. https://doi.org/10.1016/j.jmmm.2023.170761
Trost, C. O. W., Zak, S., Schaffer, S., Saringer, C., Exl, L., & Cordill, M. J. (2022). Bridging Fidelities to Predict Nanoindentation Tip Radii Using Interpretable Deep Learning Models. JOM, 74(6), 2195-2205. https://doi.org/10.1007/s11837-022-05233-z
Kovacs, A., Exl, L., Kornell, A., Fischbacher, J., Hovorka, M., Gusenbauer, M., Breth, L., Oezelt, H., Praetorius, D., Suess, D., & Schrefl, T. (2022). Magnetostatics and micromagnetics with physics informed neural networks. Journal of Magnetism and Magnetic Materials, 548, Artikel 168951. https://doi.org/10.1016/j.jmmm.2021.168951
Kovacs, A., Exl, L., Kornell, A., Fischbacher, J., Hovorka, M., Gusenbauer, M., Breth, L., Oezelt, H., Yano, M., Sakuma, N., Kinoshita, A., Shoji, T., Kato, A., & Schrefl, T. (2022). Exploring the hysteresis properties of nanocrystalline permanent magnets using deep learning. http://adsabs.harvard.edu/abs/2022arXiv220316676K
Schaffer, S., Mauser, N. J., Schrefl, T., Suess, D., & Exl, L. (2022). Machine learning methods for the prediction of micromagnetic magnetization dynamics. IEEE Transactions on Magnetics, 58(2), Artikel 7100506. https://doi.org/10.1109/TMAG.2021.3095251
Kovacs, A., Exl, L., Kornell, A., Fischbacher, J., Hovorka, M., Gusenbauer, M., Breth, L., Oezelt, H., Yano, M., Sakuma, N., Kinoshita, A., Shoji, T., Kato, A., & Schrefl, T. (2022). Conditional physics informed neural networks. Communications in Nonlinear Science and Numerical Simulation, 104, Artikel 106041. https://doi.org/10.1016/j.cnsns.2021.106041
Exl, L., Mauser, N. J., Schaffer, S., Schrefl, T., & Suess, D. (2021). Prediction of magnetization dynamics in a reduced dimensional feature space setting utilizing a low-rank kernel method. Journal of Computational Physics, 444, Artikel 110586. https://doi.org/10.1016/j.jcp.2021.110586
Exl, L., Suess, D., & Schrefl, T. (2021). Micromagnetism. in J. M. D. Coey, & S. S. P. Parkin (Hrsg.), Handbook of Magnetism and Magnetic Materials (1. Aufl., Band 1, S. 347-390). Springer International Publishing AG . https://doi.org/10.1007/978-3-030-63101-7_7-1, https://doi.org/10.1007/978-3-030-63210-6_7
Exl, L., Mauser, N. J., Schrefl, T., & Suess, D. (2020). Learning time-stepping by nonlinear dimensionality reduction to predict magnetization dynamics. Communications in Nonlinear Science and Numerical Simulation, 84, Artikel 105205. https://doi.org/10.1016/j.cnsns.2020.105205
Pfeiler, C. M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N. J., & Praetorius, D. (2020). Computational micromagnetics with Commics. Computer Physics Communications, 248, Artikel 106965. https://doi.org/10.1016/j.cpc.2019.106965
Kovacs, A., Fischbacher, J., Oezelt, H., Gusenbauer, M., Exl, L., Bruckner, F., Suess, D., & Schrefl, T. (2019). Learning magnetization dynamics. Journal of Magnetism and Magnetic Materials, 491, Artikel 165548. https://doi.org/10.1016/j.jmmm.2019.165548
Mennemann, J. F., Langen, T., Exl, L., & Mauser, N. J. (2019). Optimal control of the self-bound dipolar droplet formation process. Computer Physics Communications, 244, 205-216. https://doi.org/10.1016/j.cpc.2019.06.002
Exl, L. (2019). An optimization approach for dynamical Tucker tensor approximation. Results in Applied Mathematics, 1, Artikel 100002. https://doi.org/10.1016/j.rinam.2019.100002
Physics aware extreme learning for computational micromagnetism (invited)
Exl, L. (Invited speaker)
25 Apr. 2025 → 3 Mai 2025
Aktivität: Vorträge › Vortrag › Science to Science
Computational micromagnetics with physics-informed neural networks
Exl, L. (Vortragende*r)
5 Juni 2023 → 7 Juni 2023
Aktivität: Vorträge › Vortrag › Science to Science
Physics-Informed Neural Networks
Exl, L. (Invited speaker) & Schaffer, S. A. (Vortragende*r)
28 März 2023
Aktivität: Vorträge › Vortrag › Science to Public
Machine learning methods in computational micromagnetism (invited)
Exl, L. (Invited speaker)
15 Jan. 2023 → 18 Jan. 2023
Aktivität: Vorträge › Vortrag › Science to Science
Machine learning methods for the prediction of micromagnetic magnetization dynamics
Exl, L. (Vortragende*r)
Apr. 2021
Aktivität: Vorträge › Vortrag › Science to Science
Machine Learning for computational Micromagnetism
Exl, L. (Vortragende*r)
25 Apr. 2019
Aktivität: Vorträge › Vortrag › Science to Science
Magnetic microstructure machine learning analysis
Exl, L. (Vortragende*r)
2019
Aktivität: Vorträge › Vortrag › Science to Science
Experimentelle Grundausbildung und Hochschuldidaktik
Boltzmanngasse 5
1090 Wien
T: +43-1-4277-50426
